fluence

Nutrient Recovery and Digestate Treatment GreeneTec, LLC Symposium – January 25th, 2024

Jason Bowman Director Industrial Wastewater and Biogas, North America <u>jbowman@fluencecorp.com</u> M: 919 619 9843

Agenda

- About Fluence
- Understanding W2E
- Food Waste Digestate
 - Example
 - A perspective
- Fluence Nutrient Removal Tech
 - MABR + Nitro
 - <u>Nitrosax</u>
 - Nitrostep
 - Fostrex
- Nutrient Removal Tech Summary
- Paul's Example

About Fluence

Headquarters Minneapolis, USA

Operating Entities

Mar del Plata, Argentina Jundíai, Brazil Shanghai, China Caesarea, Israel Padova, Italy Minneapolis, USA Dubai, UAE

I Py

Regional Offices

Victoria, Australia Beijing, China Karmiel, Israel El Cairo, Egypt

fluence

About Fluence

About Fluence – Food waste projects

About Fluence

Engineering Support

- Consulting and evaluation focused
- Customer and use-oriented research.
- Global operations
- Solutions driven
- Wastewater experts

EPC approach

- Engineering + Design
- Procurement
- Assembly
- Commissioning
- Start up
- Operation

Support

- Remote monitoring
- Maintenance assistance
- Electromechanical support
- Supply of spare parts and consumables
- Sampling and Lab analysis
- Pilot tests

Understanding W2E

Effluents and organic residues composition

The anaerobic reactor converts the nutrients into energy like our body converts food to energy

- Dissolved \rightarrow Soluble COD
- Solids suspended \rightarrow Particulate COD

Energy contribution of macronutrients

The relationship between COD and solids measures the amount of energy that each type of waste or effluent can provide.

Macronutrients degradability

Each macronutrient has a different degradation time. The fastest products to break down are sugars and fats while compounds with a complex chemical bond take longer.

kg COD/kg of product

Degradation time

	Fluence CSTR	Fluence AnDAF	Fluence EFC	
Designed to operate with:	Complex carbohydratesProteinsLipids	Simple carbohydratesProteinsLipids	SugarStarch	
Applicable organic loads:	Particulate and soluble COD > 120,000 mg/L	Particulate and soluble 30,000 < COD < 100,000 mg/L	Soluble 2,000 < COD < 30,000 mg/L	
Applicable waste types:	 Dairy Distillery Confectionary Leather industry Gelatine industry Vegetable processing Fish and meat processing 	 Dairy Distillery Confectionary Vegetable oil industry Fish and meat processing 	 Dairy Brewery Confectionary Pulp and paper Fruit processing 	

	Fluence CSTR	Fluence AnDAF	Fluence EFC
Suggested pre-treatment	Screening or flotation to concentrate the sludge.	Screening	Filtration and flotation to eliminate the solids
System	Continuous	Continuous + Sludge Recirculation with AnDAF	Granular Sludge Recirculation with Fluence decanter
Feedstock	Sludge > 8% DM	2% DM < Stream < 8% DM	Soluble (TSS _{in} < 250 ppm)
Hydraulic retention time	> 25 days	10 days < HRT < 20 days	Hours
Flow mix	Completely mixed reactor	Completely mixed reactor + recirculation	Up flow reactor + recirculation
Temperature	100°F – 125°F	100°F – 125°F	90°F – 105°F
Typical Digestate Characteristics	Potential for higher effluent TSS, COD, VFA, and TKN; solids ready for dewatering	Reduced TSS and particulate organics; reduced TKN (proteins); solids ready for dewatering	Very low effluent TSS; pre- treatment may reduce TKN (protein)

Food Waste Digestate

Food Waste Digestate - example

Physical Characteristics	Unit	
Total Solids	%	2.4
VS of TS	%	62.5
COD	mg/L	13,134.4
TSS	mg/L	11,131.0
TDS	mg/L	12,960.0
Nutrients		
Short Chain Fatty Acids	Unit	
Formic Acid	ppm	15.8
Acetic Acid	ppm	3,926.7
Propionic Acid	ppm	4,476.2
		94 1
Isobutyric Acid	ppm	54.1
Isobutyric Acid Butyric Acid	ppm ppm	1,003.4
Isobutyric Acid Butyric Acid Isovaleric Acid	ppm ppm ppm	1,003.4 809.2
Isobutyric Acid Butyric Acid Isovaleric Acid Valeric Acid	ppm ppm ppm ppm	1,003.4 809.2 316.7
Isobutyric Acid Butyric Acid Isovaleric Acid Valeric Acid Caproic Acid	ppm ppm ppm ppm ppm	1,003.4 809.2 316.7 ND

Non-metals	Unit	
Total Nitrogen	ppm	2,575.0
Phosphate	ppm	101.1
Chloride	ppm	1,150.3
Minerals	Unit	
Chromium	ppm	ND
Lead	ppm	0.0
Potassium	ppm	109.0
Selenium	ppm	0.0
Sodium	ppm	39.7
Calcium	ppm	21.3
Nickel	ppm	0.0
Boron	ppm	0.1
Aluminum	ppm	3.0
Arsenic	ppm	ND
Cadmium	ppm	ND
Cobalt	ppm	ND
Copper	ppm	0.0
Iron	ppm	5.0
Manganese	ppm	0.1
Magnesium	ppm	5.1
Barium	ppm	0.1
Molybdenum	ppm	0.0
Zinc	ppm	2.9

Food Waste Digestate – a perspective

Physical Characteristics	Unit	
Total Solids	%	2.4
VS of TS	%	62.5
COD	mg/L	13,134.4
Total Nitrogen	ppm	2,575.0

- Example
 - Q_{in} = 60,000 gpd = 0.06 MGD
 - NH4 = 80% of TN
 - Ppm = mg/L

COD_{mass} = Q_{in} x COD x 8.34 = 0.06 * 13,134.4 * 8.34 = 6,572.5 ppd

<mark>NH4_{mass} =</mark> Q_{in} x NH4 x 8.34 = 0.06 * 2,060 * 8.34 = 1,030 ppd

- Compare to municipal
 - COD_{inlet} ~ 800ppm
 - NH4 = 40 ppm
- Correlation digestate is equivalent to:
 - COD_{mass} = 1 MGD municipal facility (16x)
 - Amm_{mass} = 3 MGD municipal facility (50x)
- Why it matters
 - Significant impact to municipal operations
 - Understand sizing impacts of treating digestate
 - Understanding permitting

Nutrient Removal Tech

Nutrient Removal Tech - terms

Acronyms

.

- AD anaerobic digester
- NOB nitrite oxidizing bacteria (ie NO₂ > NO₃)
- AOB ammonia oxidizing bacteria (ie NH4 > NO₂)
- HRT hydraulic retention time...time liquid is held within reactor
- SRT solids retention time...time bacterial solids remain in system
- Passive Aeration oxygen molecules diffuse through membrane and dissolve directly to aqueous biofilm.
- Diffused Aeration submerged device releases air at bottom of tank, creating small bubbles
- Heterotrophic General term for bacteria that remove BOD, COD, and or Nitrate. Bacteria require dissolved oxygen (DO) or chemically-bound oxygen (ie Nitrate = NO₃).
- Autotrophic General term for bacteria that remove ammonia/ammonium nitrogen. Bacteria require oxygen and generate energy without a carbon source (ie BOD, COD).
- Ammonia NH₃ (un-ionized form)...pH dependent
- Ammonium NH₄⁺ (ionized form)...pH dependent
- MBR Membrane Bioreactor membrane device with micron pore sizes, used to separate liquid + solids
- MABR Membrane Aerated Biofilm Reactor membrane device used to grow biofilm and directly inject oxygen to bacteria
- Clarifier process used to gravity settle suspended solids (can be primary or secondary)
- Swing zone reactor that can operate either anoxically or aerobically
- IMLR internal mixed liquor recycle (ie nitrate recycle)
- Nitrification oxidation of Ammonia/Ammonium
- Denitrification removal of Nitrate/Nitrite
- RAS return activated sludge

Nutrient Removal Tech – by Fluence

- Membrane Aerated Biofilm Reactor (MABR) + Nitro mode
 - Spiral-wound self-respiring membrane supporting simultaneous nitrification + denitrification
 - Energy-efficient shortcut nitrogen powered by MABR
- Nitrosax A Modified Sharon process
 - Energy-efficient shortcut nitrogen removal using Nitrosation + Denitrosation
- Nitrostep
 - Modified Ludzack Ettinger (MLE) using conventional nitrification-denitrification
- Fostrex
 - Preventative struvite and phosphorus removal/recovery
 - Magnesium Ammonium Phosphate precipitation

Nutrient Removal Tech – MABR

MABR Technology for Efficient Biological Nutrient Removal Wastewater Treatment for Every Need at Any Scale

- Self respirating membrane
- Uses <u>passive diffusion</u> (not diffused aeration)
- Creates AEROBIC biofilm growth inside ANOXIC environment
- Total Nitrogen reduction (NH_4 , NO_2 , NO_3).
- 300+ installations worldwide
- Multiple configurations for new or existing
- Wastewaters with BOD:N ratio < 4:1.
- <u>https://www.youtube.com/watch?v=GNhoWTdre20</u>

Nutrient Removal Tech – Nitro mode

Shortcut Nitrogen Removal

The shortcut nitrogen removal process saves energy by converting ammonia to nitrite, and then directly to nitrogen gas, skipping the conversion to nitrate in between.

Perfect for high nitrogen containing streams like...

Leachate

Swine and cow farms

14

- Uses MABR configured at specific pH, DO, and Ammonia
- System converts ammonia directly to nitrogen gas
- Nitrite Oxidizing Bacteria (NOBs) are suppressed
- Ammonia only or TN reduction configurations
- Multiple configurations for new or existing
- Concentrations from 200 ppm to 3,000 ppm NH₄-N
- Typically < 100 ppm NH₄ discharge
- ~0.6 kwh/kg NH₄ removed

Nutrient Removal Tech – Nitrosax (Modified Sharon)

- Suspended growth High activity Ammonia Removal Over Nitrite
- Controlled by ORP, temperature, pH
- Adjusted to prevent $NO_2 \ge NO_3$
- Rapid reduction of Total Nitrogen
- Typically used as primary step for 40-60% reduction
- Often combined with Fluence MABR, MLE, or MBR for lower limits

Nutrient Removal Tech - Summary

Process	Advantages	<u>Disadvantages</u>	HRT	<u>SRT</u>	OPEX	Chemical	Configurations	Target NH4 Removal
MABR	Process Stability Low Energy Total Nitrogen Flexibility Scalability	BOD:N ratio (4:1) FOG restrictions TSS restrictions 	Low	High	Low	pH, Alkalinity	MABR + Clarifier MABR + MBR MABR + UF Aer. + MABR + Clarifier 	High
	Upgrade for existing Anoxic No Nitrate recirculation							
Nitro	Process Stability Low Energy Total Nitrogen Upgrade for existing Anoxic	Alkalinity dependent BOD:N ratio (2:1)	Low to Medium	High	Low	pH, Alkalinity	MLE + Nitro Nitro + Clarifier Aerobic + Nitro + Clarifier Nitro + Nitrosax + Clarifier	High
Nitrosax	Simple High Rate No chemical Low Energy Total Nitrogen	Alkalinity dependent BOD:N ratio (2:1) May require heat 	Low to Medium	Medium	Low	none	Nitrosax + Clarifier Nitrosax + MABR + Clarifier Nitrosax + MBR 	Medium
Nitrostep	Simple Proven Low Energy Total Nitrogen	Large reactor Carbon dependent Alkalinity dependent High Recirculation	High	High	Medium	pH, Alkalinity, Carbon	Nitrostep + Clarifier Nitrostep + MBR Nitro + Nitrostep + Clarifier 	High
Fostrex	Preventive Precipitation Phosphorus removal	pH adjustment limited to Mg + NH4	Low	n/a	Medium to High	pH, Alkalinty, micronutrient	Fostrex + N removal	preventive

14

Paul's Example

Physical Characteristics	Unit	
Total Solids	%	2.4
VS of TS	%	62.5
COD	mg/L	13,134.4
TSS	mg/L	11,131.0
TDS	mg/L	12,960.0
Nutrients		
Short Chain Fatty Acids	Unit	
Short Chain Fatty Acids Formic Acid	Unit ppm	15.8
Short Chain Fatty Acids Formic Acid Acetic Acid	Unit ppm ppm	15.8 3,926.7
Short Chain Fatty Acids Formic Acid Acetic Acid Propionic Acid	Unit ppm ppm ppm	15.8 3,926.7 4,476.2
Short Chain Fatty Acids Formic Acid Acetic Acid Propionic Acid Isobutyric Acid	Unit ppm ppm ppm	15.8 3,926.7 4,476.2 94.1
Short Chain Fatty Acids Formic Acid Acetic Acid Propionic Acid Isobutyric Acid Butyric Acid	Unit ppm ppm ppm ppm	15.8 3,926.7 4,476.2 94.1 1,003.4
Short Chain Fatty Acids Formic Acid Acetic Acid Propionic Acid Sobutyric Acid Butyric Acid Isovaleric Acid	Unit ppm ppm ppm ppm ppm ppm	15.8 3,926.7 4,476.2 94.1 1,003.4 809.2
Short Chain Fatty Acids Formic Acid Acetic Acid Propionic Acid Isobutyric Acid Butyric Acid Isovaleric Acid Valeric Acid	Unit ppm ppm ppm ppm ppm ppm ppm	15.8 3,926.7 4,476.2 94.1 1,003.4 809.2 316.7
Short Chain Fatty Acids Formic Acid Acetic Acid Propionic Acid Isobutyric Acid Butyric Acid Isovaleric Acid Valeric Acid Caproic Acid	Unit ppm ppm ppm ppm ppm ppm ppm	15.8 3,926.7 4,476.2 94.1 1,003.4 809.2 316.7 ND

Non-metals	Unit		
Total Nitrogen	ppm	2,575.0	Λ
Phosphate	ppm	101.1	5
Chloride	ppm	1,150.3	
Minerals	Unit		
Chromium	ppm	ND	
Lead	ppm	0.0	
Potassium	ppm	109.0	
Selenium	ppm	0.0	
Sodium	ppm	39.7	
Calcium	ppm	21.3	
Nickel	ppm	0.0	
Boron	ppm	0.1	
Aluminum	ppm	3.0	
Arsenic	ppm	ND	
Cadmium	ppm	ND	
Cobalt	ppm	ND	
Copper	ppm	0.0	
Iron	ppm	5.0	
Manganese	ppm	0.1	
Magnesium	ppm	5.1	
Barium	ppm	0.1	
Molybdenum	ppm	0.0	
Zinc	ppm	2.9	

fluence

Paul's Example

15

Paul's Example

- 1st Reduce TSS + pCOD
 - This will improve biota and energy efficiency downstream
- 2nd Nitrostep Anoxic
 - 158,000 gallon
 - ~1,000ft²
- 3rd Nitrostep Oxic
 - 158,000 gallon
 - ~1,000ft²
- 4th Clarifier
 - 20-ft diameter x 12-ft SWD
 - ~200ft²
- ~50-ft x 50-ft
- <70 kW
- TN < 40 ppm
- Equipment ~\$750k USD
- Construction ~\$750k USD
- OPEX ~\$40,000.00 USD per year

Thank you for your attention

Jason Bowman Director of Business Development, Industrial Wastewater Ibowman@fluencecorp.com M: 919 619 9843

#